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INTRODUCTION 
 

 

It has been well recognized that merging information from different imaging modalities, 

such as mammography, sonography and magnetic resonance imaging (MRI), will greatly 

benefit the diagnosis of breast cancer [1-4], as well as contribute to the assessment of 

tumor response and image-guided therapy. However, interpreting images from different 

modalities is not trivial as different images of the same lesion may exhibit different 

physical lesion characteristics, and the image acquisitions are performed under different 

breast positioning protocols. Also, the breast is a non-rigid object, and thus conventional 

image registration methods are not appropriate. So the primary problem of merging 

image information from different modalities is to address the task of identifying 

corresponding images of lesions as seen with different imaging techniques. The purpose 

of this research is to develop correlative feature analysis methods for integrating image 

information from multi-modality breast images, taking advantage of the information from 

different views and/or different modalities, and thus improving the sensitivity and 

specificity of breast cancer diagnosis. A novel aspect of the proposed research is the 

development of correlative feature analysis (CFA) into the decision-making process. Our 

hypothesis is that the proposed correlative feature analysis can benefit computerized 

corresponding image analysis, thus help the radiologist efficiently distinguish between 

corresponding and non-corresponding lesion pairs. This report summarizes the progress 

of this Predoctoral Traineeship Award project made by the recipient during the first year. 
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BODY 
 

Training Accomplishments 
 

At the time of this report, the recipient, Yading Yuan, of the Predoctoral Traineeship 

Award has taken 21 out of the 22 required courses towards the Ph.D. degree in medical 

physics. The remaining one course will be taken in 2007, Fall. The courses include 

physics of medical imaging, physics of radiation therapy, mathematics for medical 

physicists, image processing, statistics, machine learning, numerical computation, 

computer vision, anatomy of the body, radiation biology, and teaching assistant training. 

 

Research Accomplishments 
 

1. Database collection 
 

The first part of our work has been collecting a multi-modality image database from the 

University of Chicago Hospitals, which includes full-field digital mammographic 

(FFDM) images, breast ultrasound (US) images and breast magnetic resonance (MR) 

images. The FFDM database consists of 148 malignant and 139 benign lesions. All the 

images were obtained from GE Senographe 2000D systems with a spatial resolution of 

95µm×95µm.  The US database consists of 195 malignant solid lesions, 77 simple cysts, 

25 fibrocystic nodules and 109 benign solid lesions. The US images were obtained with a 

Philips HDI 5000 US unit and a 12-5MHz linear array probe. The pixel size varied from 

53 µm to 212 µm, with the average value of 114 µm. The MR database consists of 97 

malignant and 84 benign lesions. The MR images were obtained from 1.5T GE scanners 

using T1-weighted 3D spoiled gradient echo sequences. For each case, one pre-contrast 

and five post-contrast series were taken and each series contained 60 coronal slices with a 

range of planar spatial resolution from 1.25×1.25mm
2
 to 1.6×1.6mm

2
.  Slice thickness 

ranged from 3 to 4 mm depending on breast size. All the cases in the multi-modality 

database were identified by expert breast radiologists based on visual criterion and either 

biopsy or aspiration proven reports.  

 

Based on the FFDM database, we constructed 123 corresponding image pairs and 82 non-

corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral 

(ML) view. Considering the most realistic scenario of lesion mismatch in clinical 

practice, the non-corresponding pairs were constructed from cases of the same patients 

but different physical lesions. Since in our database the number of patients having two or 

more lesions in the same breast is limited, the non-corresponding dataset included all 

possible lesion combinations from different views.  

 

With the whole multi-modality database, we also constructed a dataset with 112 cases 

having both mammography and sonography. By incorporating MR images, there are 88 

cases having all the three modality images so far. We are currently having radiologists 

determine the correspondence of lesions appeared in different modality images. 

 

2. Investigation of lesion segmentation 
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Mass lesion segmentation on mammograms is a challenging task since mass lesions are 

usually embedded and hidden in varying densities of parenchymal tissue structures. We 

have developed a dual-stage method for automatic delineation of lesion boundaries on 

FFDM images. This method utilizes a geometric active contour model that minimizes an 

energy function based on the homogeneities inside and outside of the evolving contour. 

Prior to the application of the active contour model, a radial gradient index (RGI) based 

segmentation method is applied to yield an initial contour closer to the lesion boundary 

location in a computationally efficient manner. Based on the initial segmentation, an 

automatic background estimation method is applied to identify the effective circumstance 

of lesion, and a dynamic stopping criterion is implemented to terminate the contour 

evolution when it reaches the lesion boundary. By using the FFDM database described 

above, we quantitatively compare the proposed algorithm with a conventional region-

growing method and a RGI-based algorithm by use of the area overlap ratio between 

computer segmentation and manual segmentation by an expert radiologist. At an overlap 

threshold of 0.4, 85% of the images are correctly segmented with the proposed method, 

while only 69% and 73% of the images are correctly delineated by our previous 

developed region-growing and RGI method.  A full description of the method is in 

reference [5] which is attached as Appendix A.  

 

3. Investigation of feature correlation 
 
We evaluated the correlation performance of individual computerized features extracted 

from the FFDM images of a lesion obtained in CC and ML views. In order to evaluate the 

robustness of the correlation performance to lesion segmentation, besides the 

radiologist’s outlines, three automatic segmentation methods were employed to extract 

the mass lesion from the surrounding tissues, which includes a conventional region-

growing method, a RGI-based method and the newly-developed dual-stage segmentation 

method. 15 computer-extracted features of each lesion were calculated in both views in 

order to quantify the characteristics of margin, shape, contrast and texture of the lesion. 

For each feature, correlation coefficient between the two views and the p-value of the 

derived correlation coefficient were obtained. Our results show that the features 

characterizing shape, contrast and texture performed better among the 15 individual 

features despite of segmentation methods and pathology. This is because the features 

representing large-scale information are less sensitive to the change of position than those 

representing small-scale information, which results in the higher correlation between 

large-scale features from different views than that of small-scale features. This work 

provides a guide for discriminating corresponding and non-corresponding lesion pairs 

within the CAD framework. It is also helpful for guiding the development of new 

features to improve the accuracy of image matching in disease diagnosis and prognosis. 

A more detailed summary can be found in reference [6], which is also attached as 

Appendix B. 

 

Mutual information (MI) is another measure of the dependence between two variables. It 

is well understood that mutual information measures the general dependence, while the 

correlation coefficient measures the linear dependence. So we also investigated the 

mutual information among the features and assessed its effect on the choice of 

6



discriminating features as compared with the use of linear correlation coefficient between 

features. For each feature described above, mutual information between the two views 

was obtained using a density estimation method (e.g., Parzen windows). However, the 

dependence rank of features determined by mutual information highly agreed with that 

determined by linear correlation coefficient, yielding a correlation coefficient of 0.87. 

This result indicated that linear correlation coefficient is a good metric to represent the 

dependence between features from different views. Moreover, since linear correlation 

coefficient is bounded to [-1,1], we will use linear correlation coefficient as the metric to 

choose the discriminating features.    

 

4. Development of new computerized features 
 
Since features characterizing large-scale information usually have better correlation 

performance, we developed two sets of “large-scale” features. Firstly, we extracted a set 

of texture features based on a gray-level co-occurrence matrix (GLCM). For each region, 

four GLCMs were constructed along four different directions of 0°, 45°, 90° and 135°. 

Assuming that there is no directional texture features in mammograms, a non-directional 

GLCM was obtained by summing all the directional GLCMs. Texture features were then 

computed from each non-directional GLCM. To avoid sparse GLCMs for smaller lesions, 

the gray level range of image was scaled down to 6 bits, resulting in GLCM of size 

64×64. Among the texture features, correlation feature performed best with a correlation 

coefficient of 0.67 (p-value < 10
-3

). 

 

In clinic practice, radiologists commonly use the distance from nipple to the center of a 

lesion to correlate the lesion in different views. It is generally believed that this distance 

keeps fairly constant. Thus, we developed a distance feature to measure the Euclidean 

distance between the nipple location and the mass center of lesion. We also developed an 

automatic nipple localization scheme to tracking nipple markers on each FFDM images. 

With computer-identified nipples, the distance features in CC views are highly correlated 

with those in ML views, yielding a correlation coefficient of 0.88 (p-value < 10
-3

).  

 
5. Evaluation of the performance of computerized features for the task of 

distinguishing corresponding image pairs and non-corresponding ones 
 
We used the FFDM database to evaluate the performance of computerized features for 

the task of distinguishing corresponding and non-corresponding image pairs from CC and 

ML views [7]. 17 features that were automatically extracted from the lesions could be 

grouped into three categories: (I) density and morphological features; (II) texture features 

and (III) distance feature. A stepwise feature selection procedure was employed to select 

an effective subset of features, which were then combined by Bayesian artificial neural 

networks (BANN) to obtained a discriminant score, yielded an estimate of the probability 

that the two images are of the same physical lesion. Receiver characteristic (ROC) 

analysis was used to evaluate the classification performance of the individual features and 

the selected feature subset. The distance feature yielded an AUC (area under the ROC 

curve) of 0.81 with leave-one-out cross-validation, and the feature subset with 3 features 

yielded an AUC of 0.86. The preliminary study, which includes 124 corresponding and 
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35 non-corresponding image pairs, has been submitted to SPIE Medical Imaging 

Conference, 2008. The abstract is attached as Appendix C.  
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KEY RESEARCH ACCOMPLISHMENTS 
 

• Collected and maintained a multi-modality database including full-field digital 

mammograms, breast ultrasound images and breast MR images. More than 180 

lesions were collected for each modality, which is suitable for the further correlative 

feature analysis across image modalities. 

• Developed a dual-stage lesion segmentation method for FFDM images, which 

outperformed the performances of our previous developed region-growing method 

and the RGI-based segmentation method. 

• Investigated feature correlation with both linear correlation coefficient and mutual 

information. The results demonstrate that the features representing large-scale 

information of lesions usually have better correlation performance and linear 

correlation coefficient is an appropriate metric characterizing the dependence 

between features from different views.  

• Developed texture features and distance feature, which have been proven to be useful 

in differentiating corresponding and non-corresponding image pairs. 

• Evaluated the performance of computerized features for the task of distinguishing 

corresponding and non-corresponding image pairs. The selected feature subset 

yielded an AUC of 0.86 with leave-one-out cross-validation.  
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REPORTABLE OUTCOMES 
 

Peer-reviewed Journal Papers 

• Y. Yuan, M. L. Giger, H. Li, K. Suzuki and C. Sennett, “A dual-stage method for 

lesion segmentation on digital mammograms”, Med. Phys, (In press), 2007. 

Conference Proceeding Papers 

• M. L. Giger, Y. Yuan, H. Li, K. Drukker, W. Chen, L. Lan and K. Horsch, “Progress 

in breast CADx, ” Biomedical imaging: From Nano to Macro, 2007. ISBI 2007. 4th 

IEEE International Symposium on, Arlington, Virginia, 2007 

• H. Li, M. L. Giger, Y. Yuan, L. Lan, K. Suzuki, A. Jamieson and C. Sennett, 

“Comparison of computerized image analyses for digitized mammograms and FFDM 

images, ” International Workshops on Digital Mammography, Manchester, United 

Kingdom, 2006 

Conference Presentations and Abstracts 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Correlative feature analysis of FFDM 

images”, submitted to SPIE Medical Imaging Conference, 2008. 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Computer-based feature correlation on 

multiple-view FFDM images”, Radiological Society of North America, Chicago, 

Illinois, 2006 
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CONCLUSIONS 
 

The recipient of the Predoctoral Traineeship Award has taken all the required core 

courses and many research related elective courses as well. These trainings have proven 

useful for the recipient to achieve the proposed research goals. 

 

During the first year, we have collected and maintained a multi-modality database 

including full-field digital mammograms, breast ultrasound images and breast MR 

images, which is suitable for the proposed research on correlative feature analysis for 

multi-modality images. We have developed computerized methods for lesion 

segmentation, feature extraction and selection, feature correlation analysis and image pair 

classification in differentiating corresponding and non-corresponding FFDM image pairs 

from CC and ML views, respectively. The results have shown that our computerized 

feature correlative analysis has great potential in identifying the corresponding image pair 

of a lesion for FFDM images.  

 

Overall, we have achieved the goals for the first year and laid down a good foundation 

for the research in the next two years. Our goals in the next two years include collection 

of more image data, development of feature selection method based on mutual 

information and compare it with stepwise feature selection and genetic algorithm-based 

feature selection methods, investigation of features that would have better correlation 

between image pairs across different image modalities, and evaluation of the proposed 

feature correlative analysis with the whole multi-modality database.  
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AbstratMass lesion segmentation on mammograms is a hallenging task sine mass lesionsare usually embedded and hidden in varying densities of parenhymal tissue strutures.In this paper, we present a method for automati delineation of lesion boundries ondigital mammograms. This method utilizes a geometri ative ontour model thatminimizes an energy funtion based on the homogeneities inside and outside of theevolving ontour. Prior to the appliation of the ative ontour model, a radial gradientindex (RGI) based segmentation method is applied to yield an initial ontour loserto the lesion boundary loation in a omputationally e�ient manner. Based on theinitial segmentation, an automati bakground estimation method is applied to identifythe e�etive irumstane of lesion, and a dynami stopping riterion is implementedto terminate the ontour evolution when it reahes the lesion boundary. By using afull-�eld digital mammography database with 739 images, we quantitatively omparethe proposed algorithm with a onventional region-growing method and a RGI-basedalgorithm by use of the area overlap ratio between omputer segmentation and manualsegmentation by an expert radiologist. At an overlap threshold of 0.4, 85% of theimages are orretly segmented with the proposed method, while only 69% and 73%of the images are orretly delineated by our previous developed region-growing andRGI methods, respetively. This resulting improvement in segmentation is statistiallysigni�ant.Key words: Mass lesion segmentation, geometri ative ontour model, omputer-aided diagnosis, breast aner
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I. INTRODUCTIONBreast aner is the most ommon malignany in Amerian women and the seond mostommon ause of death from malignany in this population. Aording to the AmerianCaner Soiety, about 178,480 women in the United States will be found to have invasivebreast aner in 2007, and about 40,460 women will die from the disease this year [1℄.Although some imaging modalities, suh as magneti resonane imaging (MRI)[2℄[3℄ andsonography[4℄[5℄, are urrently being investigated to improve sensitivity and spei�ity ofbreast aner diagnosis, X-ray mammography is still the most prevalent imaging proedurefor the early detetion of breast aner.Lesion segmentation, whih extrats the lesion from the surrounding tissues, is an essen-tial step in the omputerized analysis of mammograms. As mass lesions are usually embeddedand hidden in varying densities of parenhymal strutures, the task of lesion segmentationis not trivial. Many researhers have developed omputer algorithms for this task. Huo etal. [6℄ employed a region-growing method to �nd the ontour, in whih abrupt hanges insize and irularity were used as the rules of segmentation. Kupinski et al. [7℄ segmentedthe mass by applying either a radial gradient index (RGI) model or a probabilisti model tothe lesion, multiplied by a onstraint funtion. Petrik et al. [8℄ introdued a segmentationalgorithm that ombines a density-weighted ontrast enhanement �lter and a region grow-ing method. Li et al. [9℄ employed a multiresolution Markov random �eld model to detettumors in mammographi images. Timp et al. [10℄ employed both edge based informationas well as a priori knowledge about the grey level distribution of the region of interest (ROI)around the mass, and obtained an optimal ontour using dynami programming. To segmentlesions, Guliato et al. [11℄ proposed two fuzzy sets related methods � one employing a regiongrowing after fuzzy-sets-based pre-proessing, and the other using a fuzzy region-growingmethod that takes into aount the unertainty present around the boundaries of tumor.Li et al. [12℄ presented a statistial model for enhaned segmentation and extration of asuspiious mass area from mammographi images. In their study, a morphologial operation3



is derived to enhane disease patterns of suspeted masses by eliminating unrelated bak-ground lutter, and a model-based image segmentation is performed to loalize the suspetedmass areas using stohasti relaxation labeling.Originally introdued by Kass [13℄, ative ontour models (or snakes) have attrated muhattention as image segmentation tehniques. An ative ontour model minimizes an energyfuntional along a deformable ontour, whih is in�uened by both internal and externalterms. The internal energy ontrols the smoothness and elastiity of the ontour, whilethe external energy attrats the evolving ontour to deform toward salient image features,suh as edges. Although the ative ontour model has been used for segmenting objets ina wide range of medial appliations [14℄[15℄[16℄[17℄[18℄[19℄, to the best of our knowledge,few works have applied this model to the task of lesion segmentation in mammographiimages. Brake et al. [20℄, segmented mass lesions by a disrete ative ontour methodwhose external energy was determined by the image gradient magnitude. Sahiner et al. [21℄applied an ative ontour model that inorporated edge and region analysis, in whih theontour energy was minimized by a greedy algorithm. In their work, however, the ontourwas represented by the verties of an N-points polygon and eah vertex was traked duringthe proess, whih makes it di�ult for the ontour to adapt to a hange of topology, suhas splitting or merging parts.Di�ering from the segmentation methods mentioned above, in this study, we develop anautomati lesion segmentation algorithm that employs a geometri ative ontour model toextrat lesions. Geometri ative ontour models [22℄[23℄ represent ontours as a level setof a higher-dimensional salar funtion[24℄. The ontours are obtained only after ompleteevolution, thereby allowing the model to handle the topologial hanges naturally. As masslesions usually have weak edges, we use a region-based ative ontour model [25℄ that is basedon global image information, and is less sensitive to noise and the initial ontour. In order toimprove the omputational e�ieny and suppress the in�uene of unrelated strutures, ourprevious RGI-based segmentation method[7℄ is applied �rst to delineate an initial ontour,4



whih is relatively lose to the atual margin, and to estimate the e�etive bakground. Wethen exploit a dynami stopping riterion, whih is solely based on the property of the givenimage, to terminate the evolving proedure automatially.The organization of this paper is as follows: Setion 2 introdues the database used forthis study. Setion 3 desribes the proposed segmentation method. Setion 4 presents theresults, and Setion 5 and 6 give a disussion and onlusion, respetively.II. MATERIALSIn this study, we used a full-�eld digital mammography (FFDM) database, whih onsistsof 139 benign (327 mammograms) and 148 malignant (412 mammograms) lesions. All theimages were olleted from the University of Chiago Hospitals (UCH) and obtained fromGE Senographe 2000D systems (GE Medial Systems, Milwaukee, WI) with a spatial res-olution of 95 µm × 95 µm. The masses were identi�ed and outlined by an expert breastradiologist based on visual riterion and biopsy-proven reports. These outlines were used asthe �gold standard� for alibrating parameters and evaluating performae. The distributionsof e�etive projetion diameter, whih is de�ned as the e�etive diameter of the area insidethe radiologist's manually-delineated ontours, are shown in Fig. 1.[Figure 1 about here.℄III. METHODSThe main aspets of the proposed segmentation method inlude an initial RGI segmentation[7℄,bakground estimation and trend orretion, and an ative ontour segmentation based onlevel sets. Fig. 2 shows the �ow hart of the overall implementation.[Figure 2 about here.℄5



A. Ative ontour modelThe ative ontour model [25℄ relies on an intrinsi property of image segmentation: for animage formed by two regions, eah segmented region should be as homogeneous as possible.Mathematially, this model an be expressed by the following energy funtion:
E(c1, c2, C) = µ · Length(C)

+λ1 ·

∫

inside(C)

|f0(x, y) − c1|
2dxdy

+λ2 ·

∫

outside(C)

|f0(x, y) − c2|
2dxdy (1)where µ ≥ 0, λ1, λ2 > 0 are �xed weight parameters, C is the evolving ontour and

Length(C) is a regularizing term that prevents the �nal ontour from onverging to a smallarea due to noise, and c1 and c2 are mean values inside and outside of C, respetively. Notethat many other ative ontour models are edge-based as opposed to the gray-level basedmethod used here.Equation (1) an be represented and solved by level set theory [26℄. Level set theory, inwhih the two-dimensional evolving ontour C is represented impliitly as the zero level set ofa three-dimensional Lipshitz funtion φ(x, y), i.e. C = {(x, y) ∈ Ω : φ(x, y) = 0}, evolvesthe ontour by updating the level set funtion φ(x, y) at �xed oordinates through iterationsinstead of traking the ontour itself. The initial level set funtion φ(x, y) is usually de�nedas the signed distane funtion:
φ(x, y; t = 0) = ±d (2)where d is the distane from (x, y) to C(t = 0), where C(t = 0) orresponds to the initialontour. The plus (minus) sign is hosen if the point (x, y) is inside (outside) the initialontour C(t = 0). 6



With the evolution of the ontour, the level set funtion φ annot be held as a signeddistane funtion, nor an it be kept smooth. In order to maintain a smooth level set funtion,and thus ensure numerial stability of evolution, it is neessary to reinitialize the evolvinglevel set funtion to a signed distane funtion periodially. However, reinitialization is aomputationally onsuming proedure as it evolves solving the partial di�erential equation
φt = sign(φt)(1− ‖ ∇φt ‖), where ∇φt orresponds to the gradient of the level set funtion.In addition, most reinitializing shemes tend to move the ontour to some degree due tonumerial errors [27℄.A signed distane funtion φ, however, has the intrinsi property that ‖ ∇φ ‖= 1. Thus,it is more natural to inorporate this property into the ontour evolution instead of usingthe independent reinitializaing proedure desribed above. Thus, we an introdue anotherregularizing term [28℄ in the ative ontour model in (1) :

E(c1, c2, C) = µ · Length(C)

+ν ·
1

2

∫

Ω

(1− ‖ ∇φt ‖)
2dxdy

+λ1 ·

∫

inside(C)

|f0(x, y) − c1|
2dxdy

+λ2 ·

∫

outside(C)

|f0(x, y) − c2|
2dxdy (3)where ν is a weighted parameter and Ω represents the whole image spae.By replaing C with φ(x, y) in the energy funtional in (3) and introduing the regularizedversions of the Heaviside funtion Hǫ(φ) = 1

2
[1 + 2

π
arctan(φ

ǫ
)]along with the orrespondingDira measure δǫ(φ) = d

dφ
Hǫ(φ) = ǫ · [π · (ǫ2 + φ2)]−1, as given by Chen and Vese in [25℄,Equation (3) an be expressed as:
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Eǫ(c1, c2, φ) = µ ·

∫

Ω

δǫ(φ(x, y)) ‖ ∇φ(x, y) ‖ dxdy

+ν ·
1

2

∫

Ω

(1− ‖ ∇φ(x, y) ‖)2dxdy

+λ1 ·

∫

Ω

|f0(x, y) − c1|
2Hǫ(φ(x, y))dxdy

+λ2 ·

∫

Ω

|f0(x, y) − c2|
2(1 − Hǫ(φ(x, y)))dxdy (4)where the �rst integral ontrols the length of the ontour and the seond integral helps tosmooth the level set funtion and thus avoid the need for reinitialization.By �xing c1 and c2 and minimizing Eǫ in terms of φ at eah iteration, the assoiatedEuler-Lagrange equation an be derived as:

δǫ(φ) · [µ · κ − λ1 · (f0 − c1)
2 + λ2 · (f0 − c2)

2] + ν · div[(1 −
1

‖ ∇φ ‖
) · ∇φ] = 0 (5)where

κ = div(
∇φ

‖∇φ‖
) (6)represents the urvature of the ontour C, and whih also now inorporates the regularizingterm from Li et. al.[28℄. This derivation, ombining the aspet of ative ontour withoutedges and level set without reinitialization, is given in the Appendix I. Using the gradientdesent method, we an solve φ in Equation (5) iteratively by letting φ be a funtion ofiteration t and replae the zero on the right-hand side of (5) by the time derivative of φ.Thus, we obtain a partial di�erential equation as:

∂φ

∂t
= δǫ(φ) · [µ · κ − λ1 · (f0 − c1)

2 + λ2 · (f0 − c2)
2] + v · div[(1 −

1

‖ ∇φ ‖
) · ∇φ]. (7)The time derivative ∂φ

∂t
was approximated by a forward �nite di�erene:

8



δφ

δt
=

φn+1 − φn

∆t
(8)while onsidering the numerial stability of the PDE solution, the urvature κ was approxi-mated by a disretizing sheme that ombines both foward and bakward �nite di�erenes,as suggested in [29℄.

κ = ∆x
−

(

∆x
+φn

i,j

((∆x
+φn

i,j)
2 + (m(∆y

+φn
i,j, ∆y

−φn
i,j)

2)1/2

)

+∆y
−

(

∆y
+φn

i,j

((∆y
+φn

i,j)
2 + (m(∆x

+φn
i,j, ∆x

−φn
i,j)

2)1/2

) (9)where
∆x

∓ = ∓(φi∓1,j − φi,j) (10)and similarly for ∆y
∓φi,j.

m(a, b) =

(

sng(a) + sng(b)

2

)

min(|a|, |b|). (11)B. Contour initializationThe energy funtion in Equation (3) depends on the evolving urve C in a omplex way. Itis not guaranted to be quadrati or even onvex, and one might �nd a loal minimum of theenergy funtion somewhere in the neighborhood of the initial ontour. Thus, initializing theontour is a non-trivial task for ative ontour models. Sine lesions' sizes vary, it is di�ultto �nd �xed parameters (suh as the radius of a irle) with whih to initialize the ontourfor an entire database. Hene, we use our previous RGI-based segmentation method[7℄ toestimate the initial boundary of a lesion.The RGI-based segmentation algorithm[7℄ inorporates prior knowledge that mass le-9



sions are roughly ompat, and thus, the original image f(x, y) is multiplied with a two-dimensional onstraint funtion G(x, y; µx, µy, σ2) to yield a pre-proessed image h(x, y)as:
h(x, y) = f(x, y) × G(x, y; µx, µy, σ2) (12)where G(x, y; µx, µy, σ2)is a Gaussian funtion entered at the manually-indiated seedpoint (µx, µy), and with variane σ2. The multipliation with the Gaussian funtion reduesthe ontribution of strutures beyond the lesion, and thus, σ is set to 15mm to aommodatemost mammographi lesion sizes. We have found that the segmentation performane is notstrongly dependent on the hoie of σ. Larger lesions an also be segmented even thoughthe small deviations around the margin of the lesion are usually not delineated well.Starting from the given seed point (µx, µy), a series of grey level thresholds are thenapplied to the pre-proessed image h(x, y) to yield multiple ontours. For eah ontour, anRGI value is alulated, where RGI is de�ned as:

RGI(µx, µy, Ci) =

∑

(x,y)∈Ci

(∇h(x, y) · r̂(x,y)
‖r̂(x,y)‖

)

∑

(x,y)∈Ci

‖ ∇h(x, y) ‖
(13)where Ci is the set of points on the ith ontour, ∇h(x, y) is the gradient vetor of h(x, y)at point (x, y), r̂(x, y)/ ‖ r̂(x, y) ‖ is the normalized radial vetor, the diretion of whih isalulated at position (x, y) with respet to the seed point (µx, µy). Of these ontours, theone yielding the maximum RGI value is hosen as the ontour that best delineates the lesionin the initial step.RGI represents the average proportion of the gradients in the radially outward diretion.The strategy of hoosing maximum RGI works well for benign lesions as most have irular-like shapes and smooth margins. However, for malignant lesions, beause of irregular shapesand spiulate margins, the resulting ontours are usually under-grown. Nevertheless, RGIprovides a good initial ontour for the following evolution driven by ative ontour model.10



C. Bakground estimationIn the ative ontour model, ontour evolution relies on the ompetition between the regioninside the ontour (foreground) and that outside the ontour (bakground). The presene ofstruture noises suh as lymph nodes, parenhyma, and loalization markers ompliates thebakground in mammgrams. RGI segmentation provides not only the initial ontour, butalso a means to estimate the e�etive bakground surrounding the lesion. In our study, thee�etive bakground is de�ned as the set of pixels within a given distane d (pixels) fromthe irumsribed retangle of the initial ontour, as shown in Fig. 3.[Figure 3 about here.℄Distane d plays an important role in determining the e�etive bakground. On onehand, a large d yields a large region and thus better statistis on the bakground. On theother hand, a small d would not be ontaminated by nearby strutures. In this study, anautomati sheme was developed to determine the best distane d from a series of andidates.For a series of distanes di, i = 1, ..., L, two series of regions an be determined, as Fig.4 (a) shows. One series of regions are bakground andidates Bi (Fig. 4 (b)), and the otherseries are net inreases of bakground BNi (Fig. 4 ()), where BNi = Bi+1−Bi, i = 1, ..., L−1.Our method is based on the following two priniples: With the expansion of bakground,1) the mean gray value of Bi, i.e. mean(Bi), should derease as more areas with lower graylevel are inluded; and 2) the standard deviation of BNi , i.e. std(BNi), should not hangesubstantially for relatively smooth bakground. By monitoring mean(Bi) and std(BNi) withinreasing di , two potential distane andidates are obtained. One andidate is de�ned asthe distane at whih mean(Bi) reahes a minimum value, and the other andidate is de�nedas the distane at whih std(BNi) demonstrates the maximum inrease, as shown in Fig. 5.At last, the �nal distane is hosen as the minimum of these two andidates. As for theexample in Fig. 4, the distane is automatially determined d = 110 (pixels).[Figure 4 about here.℄11



[Figure 5 about here.℄D. Bakground trend orretionDue to the non-uniformity of the bakground distribution, some pixels in the bakgroundhave similar gray values as in the lesion, whih hinders the segmentation performane of theative ontour model. Thus, a two-dimensional bakground trend orretion was employedprior to segmentation. The bakground trend is estimated by �tting a two-dimensionalsurfae with a least-squares method to the gradual hange in the bakground pixel valueswithin the extrated bakground estimation region. Here, we used a �rst-order ploynomialfuntion, i.e. f(x, y) = a+b ·x+c ·y, to desribe the two-dimensional surfae as higher orderpolynomial funtions will estimate mass lesion instead. Fig. 6 demonstrates the signi�aneof the bakground trend orretion when a non-uniform bakground is present.[Figure 6 about here.℄E. Dynami stopping riterionTo stop the evolution of a ontour, a pre-determined threshold is often used. Various metrisan be used to hek onvergene of evolution, suh as the hange of level set funtion φ [30℄and the hange of length of ontour [31℄. The ontour evolution an also be terminated whenthe area inside the ontour di�ers from the initial one by a given value [32℄. In our initialstudy, we had ever de�ned a stopping riterion of relative foreground hange (RFC), whih isthe ratio between the hange of foreground and the area of foreground. Comparing with thestopping riterion of hange of ontour length used in [31℄, RFC has two advantages: 1) RFCis a relative measure and thus is more suitable for lesions with various sizes; 2) RFC is moreomputationally e�ient as the aquisition of ontour in [31℄ brings additional omputation.No matter the strategy is used, it is neessary to set some threshold in advane. However, dueto varying sizes of lesions as well as sizes of bakground obtained from automati bakground12



estimation, it is di�ult to �nd a �xed parameter for ontrolling onvergene.In our preliminary work [33℄, we developed a dynami method to terminate ontourevolution automatially. In that work, as the ontour evolves, mean values of both foregroundand bakground will derease gradually. As foreground is generally more homogeneous thanthe bakground, the rate of foreground mean hange is less than that of bakground meanhange. However, as the evolving ontour rosses the lesion margin, the foreground meanwill derease faster than will the bakground mean. Thus, during dynami ontouring, thedi�erene between the rate of foreground mean hange and that of bakground mean hangeis traked, and ontour evolution is terminated when the derease of foreground mean valueis more rapid than that of the bakground mean value. This method provides a way toterminate ontour evolution free of pre-de�ned threshold. However, it neglets the in�ueneof sizes of both foreground and bakground, and thus eases ontour evolution earlier thanexpeted.In order to address this problem, we modi�ed the previous method, whih we presenthere in one dimension. As Fig. 7 shows, g(x) is a dereasing funtion de�ned on the interval
[0, L], and point s is moving within [0, L] at the speed of ~v. s also splits [0, L] into tworegions. For simpliity, the region [0, s] is named region 1, and [s, L] is region 2. Then, themean values of region 1 and 2 are: [Figure 7 about here.℄

c1 =

∫ s

0
g(x)dx

s
, c2 =

∫ L

s
g(x)dx

L − s
..The slope of c1 is:

13



dc1

dt
=

dc1

ds
·
ds

dt

=
d

ds
(

∫ s

0
g(x)dx

s
) · ~v

=
g(s) − c1

s
· ~v.Here, we use the fat that ~v = ds

dt
· v̂, where v̂ is the outward unit vetor. Similarly, the slopeof c2 is :

dc2

dt
= −

g(s) − c2

L − s
· ~v.Thus, the di�erene between these two slopes is:

∆v =
dc1

dt
−

dc2

dt
= (

g(s) − c1

s
+

g(s) − c2

L − s
) · ~v. (14)As the disussed above, as s moves within the objet, we have ∆v > 0. As s moves arossthe edge, ∆v will beome negative. When ∆v = 0, we have g(s) = s
L
·c2+

L−s
L

·c1 > 1
2
(c1+c2) asin general L−s > s and c1 > c2 . However, if only the speed terms driven by image propertyin Equation (7) are onsidered, the evolution should stop at s0 suh that g(s0) = 1
2
(c1 + c2).Beause of the in�uene of sizes, s will stop moving quikly if the riterion in Equation (14)is used.In order to eliminate the in�uene of size, a weighted di�erene between slope of c1 andthat of c2 is introdued as :

∆vw =
s

L − s
·
dc1

dt
−

dc2

dt
=

1

L − s
· [2 · g(s) − (c1 + c2)] · ~v. (15)It an be shown that ∆vw goes to zero at the desired ontour s0, where g(s0) = 1

2
(c1 + c2).The one-dimensional ase, desribed above, an be extended to two-dimensional one.During the ontour evolution, the weighted di�erene between the mean slope of foreground14



and that of bakgournd is monitored, and the ontour evolution is terminated when theweighted slope di�erene onverges to zero.F. ImplementationIn order to alibrate parameters in the proposed segmentation method, ten digitized sreen-�lm mammograms (SFM) with spatial resolution of 100µm × 100µm were analyzed. Thealibrated segmentation method was then applied to the entire FFDM database for indepen-dent performane evaluation.In our study, we kept both λ1 and λ2 in Equation (7) to one (i.e. λ1 = λ2 = 1) sinethe ontribution of the homogeneities of inside and outside the ontour should be equallyonsidered. Other parameters in Equation (7) were hosen as follows: ǫ = 1 and ∆t = 0.1,where ǫ in�uenes the Heavyside funtion and ∆t ontrols how quikly the level set funtionhanges. Note that µ ontrols the smoothness of the �nal ontour. However, If one wantsto depit the �ne details of the objet, one should hoose a small µ. On the ontrary, if onewants to obtain a smoother ontour, one should set a large µ. As some of our omputer-extrated features, suh as spiulation, haraterize the �ne details of the lesion margin, wehose a fairly small value of µ, i.e. 0.001× 10232, whih also allows for the use of the 10 bitdata. To ensure numerial stability, the oe�ient ν must satisfy ν · ∆t < 1
4
[28℄, so we set

ν = 2 in our study. The maximum number of iterations is set to 500.G. Performane evaluationThe performane of the proposed segmentation algorithm was assessed by omparing theomputer-delineated ontours with the outlines drawn by an expert breast radiologist. Be-sides visually evaluating the agreement of omputer-segmented results with radiologist'smanually-ontoured lesion margins, a quantitative measure was used to evaluate the segmen-tation performane. For a partiular lesion, the area overlap ratio (AOR) between manualsegmentation and omputer segmentation is de�ned as:15



AOR =
Area(M ∩ C)

Area(M ∪ C)
(16)where M is the manually-segmented ontour and C is the omputer-segmented ontour.

AOR ranges from zero to one, being zero in the ase of no overlap and one in the ase ofa perfet math. For the entire database, a series of AOR thresholds were obtained andat eah AOR threshold, the perentage of lesions �orretly� segmented was alulated byounting the number of lesions with AOR greater than that threshold.IV. RESULTSA. Evaluation of level set smoothnessIn our study, a new term ES ≡
∫

Ω
(1− ‖ ∇φt ‖)dxdy is added to the original ative ontourmodel in [25℄, thus we initially evaluate the usefulness of this term. Two sets of �nal ontourswere extrated from the entire FFDM database, one was obtained with ES and the otherwithout. The results show that ES an not only provide a smoother ontour, but alsopush the ontour loser to the lesion margin with less iterations, yielding a mean number ofiterations 160 ompared to the mean numer of iterations 327 without ES. In the exampleshown in Fig. 8, the left �gure shows the segmentation result without smoothing level setfuntion, whih took 500 iterations. While for the result with smoothing level set funtionin the right �gure, it only took 248 iterations to onverge.[Figure 8 about here.℄B. Evaluation of dynami stopping riterionWe investigated our new stopping riterion based on the weighted slope di�erene betweenforeground mean and bakground mean (∆vw), and ompared it to the unweighted slopedi�erene method as well as the relative foreground hange (RFC). The RFC thresholds to16



terminate ontour evolution were set as 0.05, and 0.01, respetively. During the evolution, wereorded the ontours using these four stopping riteria and obtained AOR with radiologist'soutlines.Fig. 9 shows plots of the fration of orretly segmented lesions at various AOR thresholdfor the four stopping riteria (∆vw, ∆v, RFC0.05 and RFC0.01) on the FFDM databases.For benign images, all the riteria yielded similar segmentation performanes sine the initialontours, obtained by RGI segmentation, are lose to the true lesion margins. However, asRGI segmentation is inferior for malignant lesions, ∆vw does perform better among all thestopping riteria. [Figure 9 about here.℄Table 1 summerizes the statistial omparison (Holm t test)[34℄ among these four riteria,given the mean and standard deviation of AOR for eah riterion. In terms of area overlapratio (AOR), the weighted slope di�erene method is statistially better than the unweightedslope di�erene method, and the onvergene rate at RFC = 0.05 (overall signi�ant level
αT = 0.05). However, we failed to show a statistially signi�ant di�erene between theweighted slope di�erene method and the onvergene rate at RFC = 0.01. Nevertheless, ifthe number of iterations is taken into aount, the mean number of iterations for weightedslope di�erene is 156, while it is 280 for RFC0.01. The weighted slope di�erene is moree�ient than RFC0.01. [Table 1 about here.℄C. Comparative evaluation of the segmentation methodThe segmentation algorithm was ompared with our previously-reported region-growing[6℄and RGI-based segmentation[7℄ methods. Fig. 10 shows several examples of lesion segmen-tations using these three segmentation methods. The result of the proposed method visuallydemonstrates a better agreement with the radiologist's outline of the lesion.17



[Figure 10 about here.℄Fig. 11 shows the fration of lesions orretly segmented at various overlap thresholdlevels. At the overlap threshold of 0.4, for benign lesions, 87% of the images are orretlysegmented with the proposed method, while 72% and 81% of the images are orretly seg-mented by the region-growing and RGI-based methods, respetively. For malignant lesions,84% of the images are orretly segmented with the proposed method, while 66% and 67% ofthe images are orretly segmented by region-growing and RGI-based methods, respetively.[Figure 11 about here.℄Table 2 gives the statistial omparison (Holm t test)[34℄ for AOR means from the threesegmentation methods. The improvement of AOR with the proposed method was found tobe statistially signi�ant (overall signi�ant level αT = 0.05).[Table 2 about here.℄V. DISCUSSIONWe developed a dual-stage segmentation method to e�iently segment mass lesions fromthe parenhymal surround in FFDM images. Our proposed method inludes a geometriative ontour model, whih inludes analysis of homogeneities both inside and outside ofthe evolving ontour. The appliation of RGI-based segmentation to provide initial ontournot only improves the omputational e�ieny, but also provides a method with whih toestimate the e�etive bakground about the lesion and to suppress unrelated pixel values.Also, our automati stopping riterion is lesion-spei�, and does not rely on �xed iterations.As the results show, the term ES in the ative ontour model plays an important role fore�etive and e�ient segmentation. As ‖ ∇φ ‖> 1, div[(1− 1
‖∇φ‖

)∇φ] will evolve the level setfuntion φ towards reduing ‖ ∇φ ‖, thus to smooth φ. The larger the gradient magnitudeof level set funtion, the more it will be smoothed. While as ‖ ∇φ ‖< 1, div[(1 − 1
‖∇φ‖

)∇φ]18



will evolve the level set funtion towards inreasing ‖ ∇φ ‖ to maintain the gradient of thelevel set funtion to some level. This mehanism ensures the level set funtion, and thus the�nal ontour, to be relatively smooth. Meanwhile, as ‖ ∇φ ‖ is restrited in magnitude, theforeground has the potential to grow faster.It should be notied that the weighted slope di�erene ∆vw is always non-negative aslong as g(x) is a dereasing funtion. In the ative ontour model, if only the speed termdriven by image property is onsidered, the speed of ontour an be simpli�ed as:
~v = [(g(s) − c2)

2 − (g(s) − c1)
2] · v̂

= (c1 − c2) · [2 · g(s) − (c1 + c2)] · v̂where v̂ is the outward unit vetor. Inserting ~v into Equation (15), we have:
∆vw =

1

L − s
· (c1 − c2) · [2 · g(s) − (c1 + c2)]

2 · v̂ ≥ 0.If ~v is driven by other image property, suh as edge information, this relationship still holds.When g(s) > 1
2
(c1 + c2), i.e. s is within the objet, the ontour will move outward to theedge, thus, we have ∆vw ≥ 0. While if g(s) < 1

2
(c1 + c2), i.e. s is out of objet, it will moveinward to the edge, we will also have ∆vw ≥ 0. So the weighted slope di�erene also providesa general mehanism for terminating ontour evolution with other ative ontour models.In this study, we empirially ompared the segmentation performane of the proposedmethod with our previously-reported region growing[6℄ and RGI-based[7℄ segmentation meth-ods. However, it is impossible for us to perform empirial omparisons between our methodand those reviewed in the introdution setion, as we do not have odes of those methods.Timp's method[10℄ uses polar oordinate and restrits the mass sizes within ertain range,thus one would expet their method to work better for lesions with irular-like margins.However, for lesions with irregular shapes or very large sizes, their method may have dif-19



�ulty. Our dual stage segmentation method is able to handle this situation by furtherevolving the ontour via the ative ontour model. For the fuzzy-set-based methods devel-oped by Guliato et al. [11℄, both of them need to preset some thresholds suh as the gray-levelthreshold in the �rst method and the maximum allowed di�erene between the value of thepixel being analyzed and the mean of the sub-region in the seond method, whih preventsthese methods from being applied in a large database. Their two thresholds were manuallyseleted ase by ase in their evaluation using a database with 47 mammograms. On theother hand, our method is �exible in that no threshold need to be set in advane.In our preliminary study [35℄, we ompared two radiologists' outlines with a digitizedsreen-�lm mammograms (SFM) database, whih onsisted of 29 benign (51 mammograms)and 55 malignant (96 mammograms) lesions. At an overlap threshold of 0.4, 96.6% oflesion images were orretly segmented by one radiologist in omparison with the other.This result indiates that the radiologists highly agreed on the lesion margins for SFM. Weould expet that the radiologists would also agree on the lesion margins for FFDM as themanufaturer has pre-proessed the FFDM images to make them appear to radiologist astraditional-looking SFM mammographs.When we developed the proposed segmentation algorithm, the FFDM database was beingonstruted, so our method was initially alibrated and tested with the SFM database [33℄.After building the FFDM database, we randomly piked three groups of FFDM images, eahof whih onsisted of �ve benign and �ve malignant images, and evaluated the segmentationperformane using the proposed method alibrated with SFM images. The results weresimilar with what we had obtained with SFM images. Thus, we believe that the parametersobtained by SFM also work with FFDM images, whih was subsequently validated by theindependent evaluation with the entire FFDM database.Our results ould be partially explained by the pre-proessing of FFDM images, whihis performed by the manufaturers. After pre-proessing, the gray-level range and onstrastof FFDM images beome similar to those of SFM images, whih ensures the possibility of20



applying parameters from SFM images to FFDM images as gray-level range and ontrastare two key omponents used in our proposed lesion segmentation method. Our results alsoshow the robustness of the proposed method as it mainly uses the global information ofimages.VI. CONCLUSIONIn this paper, we present a new lesion segmentation method based on a geometri ativeontour model, whih inludes an initial RGI segmentation, bakground estimation, bak-ground trend orretion, and a dynami stopping riterion. Evaluation with a large numberof FFDM images has shown that the proposed method is statistially superior to our previousregion-growing and RGI-based algorithms in terms of overlap ratios obtained in ompari-son with expert's manual outlines. At an overlap threshold of 0.4, 85% of the images areorretly segmented by the proposed method, while only 69% and 73% of the images areorretly segmented by our previous region-growing and RGI-based methods, respetively.ACKNOWLEDGMENTThis work was supported in part by US Army Breast Caner Researh Program (BCRP) Pre-dotoral Traineeship Award (W81XWH-06-1�726), by United States Publi Health Servie(USPHS) Grant CA89452, and by a grant from the US Army Medial Researh and MaterielCommand grant (DAMD 98-1209), and by Caner Center Support Grant (5-P30CA14599).M. L. Giger is a shareholder in R2 Tehnology, In (Sunnyvale, CA), a Hologi Company.It is the University of Chiago Con�it of Interest Poliy that investigators dislose publilyatually or potential signi�ant �nanial interest with would reasonably appear to be diretlyand signi�antly a�eted by the researh ativities.
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APPENDIXIn this part, we provide the details of the derivation from energy funtion (4) to the assoiatedEuler-Lagrange equation (5). For onveniene, we restate Equation (4) here as:
Eǫ(c1, c2, φ) =

∫

Ω

[µ · δǫ(φ(x, y)) ‖ ∇φ(x, y) ‖

+
v

2
· (1− ‖ ∇φ(x, y) ‖)2

+λ1 · |f0(x, y) − c1|
2Hǫ(φ(x, y))

+λ2 · |f0(x, y) − c2|
2(1 − Hǫ(φ(x, y)))]dxdy. (17)We de�ne F (φ,∇φ, x, y) as:

F (φ,∇φ, x, y) = µδǫ(φ) ‖ ∇φ ‖ +
v

2
(1− ‖ ∇φ ‖)2

+λ1|f0 − c1|
2Hǫ(φ) + λ2|f0 − c2|

2(1 − Hǫ(φ)). (18)For simpliity, we have omitted the independent variables (x, y) of φ and f0. Aordingto Calulus of Variations, the salar funtion φ(x, y) that minimizes Eǫ(c1, c2, φ) solves thePDE:
d

dx
(
∂F

∂φx
) +

d

dy
(
∂F

∂φy
) −

∂F

∂φ
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∂F

∂φ
= µ ‖ ∇φ ‖ δ

′

ǫ(φ) + [λ1(f0 − c1)
2 − λ2(f0 − c2)

2]δǫ(φ) (20)where δ
′

ǫ = dδ
dφ

and we use the relation ‖ ∇φ ‖=
√

φ2
x + φ2

y.The partial derivative of ∂F
∂φx

with respetive to x is:
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Figure 1: Distribution of lesions' e�etive diameters obtained from the FFDM database.
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Figure 2: Shemati diagram of the proposed dual-stage lesion segmentation algorithm.
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Figure 3: Illustration of de�ning the e�etive bakground. In this �gure, the solid linerepresents the initial ontour obtained by RGI segmentation and the dash-dotted retangleis the irumsribed retangle of this initial ontour. The e�etive bakground is de�ned asthe region inside the dashed retangle exluding the region within the initial ontour. Anautomati sheme is employed to determine the best d.
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Figure 4: The illustration of determining the distane d. (a) a mammogram with a series ofdistanes di, in whih the thik dashed retangle represents the omputer-seleted distane d; (b) Bi: the ith bakground andidate orresponding to di ; () BNi: the ith net bakgroundinrease. Bakground is de�ned as the set of pixels within a given distane di (pixel) fromthe irumsribed retangle of the initial ontour.
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(a) (b)

() (d)Figure 6: An example of the e�et of bakground trend orretion on segmentation. (a) theoriginal ROI ; (b) segmentation result of (a); () the proessed ROI after bakground trendorretion; and (d) segmentation result of ().
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Figure 8: An example of the e�et of level set smoothness to the �nal segmentation re-sults. Left: segmentation without level set smoothness; Right: segmentation with level setsmoothness.
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(a) (b) () (d)Figure 10: Segmentation results for 5 malignant lesion examples. (a) radiologist's outline, (b)region-growing, () RGI-based segmentation and (d) the proposed dual-stage segmentationmethod 39
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Figure 11: Performane of three di�erent segmentation methods in terms of area overlapratio (AOR) on a linial FFDM database. Left: evaluated on 327 benign images; Right:evaluated on 412 malignant images. The results show that the dual-stage segmentationmethod is statistially superior to both region-growing and RGI-based method.

40



List of TablesI Statistial omparison of the performane of four stopping riteria in the dual-stage segmentation in terms of average area overlap (AOR), and p-valuesare given for the omparison of the weighted slope di�erene with any otherstopping riterion. The signi�ant level αi for the individual paired t test isalulated using Holm's proedure (overall αT = 0.05). Same onvention asFig. 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42II Statistial omparison of the three lesion segmentation algorithms. Perfor-mane is given by average area overlap ratio, and p-values are given for theomparison of the dual-stage segmentation with the previous region-growingand RGI-based method. The signi�ant level αi for the individual paired ttest is alulated using Holm's proedure (overall αT = 0.05). . . . . . . . . 43

41



Table I: Statistial omparison of the performane of four stopping riteria in the dual-stage segmentation in terms of average area overlap (AOR), and p-values are given forthe omparison of the weighted slope di�erene with any other stopping riterion. Thesigni�ant level αi for the individual paired t test is alulated using Holm's proedure(overall αT = 0.05). Same onvention as Fig. 9.
∆vw ∆v RFC0.01 RFC0.05Benign

mean ± std 0.61 ± 0.19 0.61 ± 0.19 0.61 ± 0.19 0.61 ± 0.19
p-value − 0.856 0.801 0.601sig. lev. (αi) − − − −Malignant
mean ± std 0.59 ± 0.19 0.53 ± 0.20 0.57 ± 0.19 0.52 ± 0.20
p-value − < 0.001 0.192 < 0.001sig. lev. (αi) − 0.05 − 0.025All
mean ± std 0.60 ± 0.19 0.57 ± 0.20 0.59 ± 0.19 0.56 ± 0.20
p-value − 0.002 0.25 < 0.001sig. lev.(αi) − 0.05 − 0.025
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Table II: Statistial omparison of the three lesion segmentation algorithms. Performaneis given by average area overlap ratio, and p-values are given for the omparison of thedual-stage segmentation with the previous region-growing and RGI-based method. Thesigni�ant level αi for the individual paired t test is alulated using Holm's proedure(overall αT = 0.05). Dual-stage segmentation RGI Region-growingBenign
mean ± std 0.61 ± 0.19 0.58 ± 0.19 0.51 ± 0.20
p-value − 0.01 < 0.001seg. lev. (αi) − 0.05 0.025Malignant
mean ± std 0.59 ± 0.19 0.48 ± 0.20 0.49 ± 0.20
p-value − < 0.001 < 0.001seg. lev. (αi) − 0.025 0.05All
mean ± std 0.60 ± 0.19 0.52 ± 0.20 0.50 ± 0.20
p-value − < 0.001 < 0.001seg. lev. (αi) − 0.05 0.025
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TITLE:  
 

Feature correlation on multiple-view FFDM images  

 

AUTHORS:  
 

Yading Yuan, Maryellen L. Giger, Hui Li and Charlene Sennett 

 

PURPOSE: (473/2200) 
 

The objective of this study is to evaluate the correlation performance of individual 

computerized features extracted from the full field digital mammograms (FFDM) of a 

lesion obtained in two different views. This research provides a guide for discriminating 

corresponding and non-corresponding lesion pairs within the CAD framework. It is also 

helpful for guiding the development of new features to improve the accuracy of image 

matching in disease diagnosis and prognosis. 

 

 

METHOD AND MATERIALS: (1234/2200) 

 

One dataset (A) includes 103 biopsy proven cases (48 benign solid lesions and 55 

malignant lesions), each of which has a craniocaudal (CC) and mediolateral (ML) view. 

Another dataset (B) includes 52 cases (24 benign solid lesions and 28 malignant lesions), 

each of which has a CC and mediolateral oblique (MLO) view. In order to evaluate the 

robustness of the correlation performance to lesion segmentation, besides the 

radiologist’s outlines, three automatic segmentation methods were employed to extract 

the mass lesion from the surrounding tissues. The conventional region-growing method 

uses abrupt changes in size and circularity as the rules of segmentation. The radial 

gradient index (RGI) based method applies RGI model to the suspicious lesion multiplied 

by a constraint function. The region-based active contour model evolves the contour 

based on the homogeneities both inside and outside of the evolving contour. Fifteen 

computer-extracted features of each lesion were calculated in both views in order to 

quantify the characteristics of margin, shape, contrast and texture of the lesion. For each 

feature, correlation coefficient between the two views and the p-value of the derived 

correlation coefficient were obtained.  

 

 

RESULTS: (672/2200) 

 

With the human outline, the feature characterizing the diameter of lesion yielded the 

correlation efficient of 0.87 for dataset A and 0.88 for dataset B, both of which have p-

values far less than 0.05. The features characterizing shape, contrast and texture showed 

better performance among the 15 individual features despite of segmentation methods, 

pathology and the type of view pairs. This is because the features representing large-scale 

information are less sensitive to the change of position than those representing small-
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scale information, which results in the higher correlation between large-scale features 

from different views than that of small-scale features.  

 

CONCLUSIONS: (301/2200) 

 

Our investigation indicates that the features that characterize the large-scale information 

of lesion have higher correlation between the two view images. We are currently 

applying these features to develop automated image matching method to determine 

corresponding and non-corresponding lesion pairs. 

 

 



 

 

TITLE:  

Correlative feature analysis of FFDM images  

AUTHORS:  
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KEYWORDS:  
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ABSTRACT:  

Identifying the corresponding image pair of a lesion is an essential step for combining information from 
different views of the lesion to improve the diagnostic ability for both radiologists and CAD systems. Because 
of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In 
this study, we present a computerized framework that differentiates the corresponding images from different 
views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial 
radial gradient index (RGI) based segmentation and an active contour model, was firstly applied to extract 
mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from 
each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context 
of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of 
features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the 
probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the 
performance of the individual features and the selected feature subset in the task of distinguishing 
corresponding pairs from non-corresponding pairs. By using a FFDM database with 124 corresponding image 
pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 
0.80 with leave-one-out evaluation, and the feature subset, which includes distance feature, lesion size and 
lesion contrast, yielded an AUC of 0.86.  

DISCRIPTION OF PURPOSE: 

Merging information from different views of a lesion has been widely recognized to allow radiologists to 
better detect and evaluate breast abnormalities in FFDM images. However, since a mammogram represents 
the 2D projection of the 3D distribution of attenuation coefficient, as well as the breast being a non-rigid 
object, the conventional image-registration techniques are not appropriate. In this study, we propose a 
computerized scheme, which relies on computer-extracted features instead of the original image, to determine 
if an image pair from different views represents the same lesion.  

METHOD(S): 

A dual-stage segmentation method was firstly applied to extract lesions from the surrounding tissues. This 
algorithm utilizes a geometric active contour model that maximizes an energy function based on the 
homogeneities inside and outside of the evolving contour. Prior to the application of the active contour model, 
a RGI-based method is applied to yield an initial contour close to the lesion boundary location in a 
computationally efficient manner.  

Three groups of computer-extracted lesion features were used in our study. The first group includes features 
characterizing spiculation, margin, shape and contrast of a lesion, which are widely used for the task of 
distinguishing between malignant and benign lesions. The second group includes texture features extracted 
from various regions including the lesion, the surrounding neighborhood of the lesion, and the entire ROI, 
respectively. For each region, a 2D gray-level co-occurrence matrix (GLCM) was constructed, and texture 
features were extracted to quantify the spatial dependence of gray-level values. We developed an automatic 
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neighborhood estimation method to determine the effective circumstance of the lesion. The third group 
includes a distance feature calculated as the Euclidean distance from the nipple location to the center of the 
lesion. A nipple searching method was developed to identify the nipple location automatically. 

A two-step method was employed for feature selection. A classifier was firstly applied to each single feature 
pair from different views, yielding a “correspondence” feature that represents the probability of corresponding 
pairs. Then, a linear stepwise feature selection method was used to select the effective subset of these 
correspondence features.  

We used the BANN as our classifier, which incorporates Bayesian inference to avoid the problem of “over 
fitting”. Receiver operating characteristic (ROC) analysis was used to assess the performance of the 
individual features and the selected feature subset in the task of distinguishing corresponding pairs from non-
corresponding pairs. 

RESULTS: 

In our preliminary study, we tested the proposed scheme using a FFDM database, which includes 131 biopsy-
proven lesions (63 benign and 68 malignant). From this database, we constructed 124 corresponding pairs and 
35 non-corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral (ML) view. 
Considering the most realistic scenario of lesion mismatch in clinical practice, the non-corresponding pairs 
were constructed from cases of the same patients but different physical lesions.  

The correlation between the distance feature, from the automatic nipple identification method and those from 
manual nipple identification was 0.997 (p<0.0005). In leave-one-out evaluation by lesion, the distance feature 
outperformed among all the single features, yielding an AUC of 0.80. Distance feature, lesion size and lesion 
contrast were selected as the effective feature subset and yielded an AUC of 0.86. The improvement by using 
multiple features was statistically significant compared to single feature performance (p = 0.0075).  

NEW OR BREAKTHROUGH WORK TO BE PRESENTED: 

Our study includes three attractive features: 1) This correlative feature analysis (CFA) framework is based on 
computer-extracted features instead of original images, which is different from conventional image 
registration in which the registration is to align two images known to represent the same object, while the task 
of CFA is to evaluate the probability that the given two images represent the same object; 2) The newly 
developed distance feature improves the performance of single feature from AUC of 0.71 (lesion size) to 0.80 
with leave-one-out evaluation (p = 0.04); 3) The first step of the new two-stage feature selection method 
effectively reduces the dimensionality of the feature space, and thus improves the performance to AUC of 
0.86 with leave-one-out evaluation, as compared with 0.76 when applying the original features directly 
(p=0.03). 

CONCLUSIONS: 

We have presented a correlative feature analysis framework to estimate the probability that a given pair of 
two images as of the same physical lesion, and our investigation indicates that the proposed method is a 
promising way to distinguish between corresponding and non-corresponding pairs. We are collecting more 
cases to evaluate our method on a larger scale. 

INDICATE WHETHER THE WORK IS BEING, OR HAS BEEN, SUBMITTED FOR 
PUBLICATION OR PRESENTATION ELSEWHERE, AND, IF SO, INDICATE HOW THE 
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